Tensor Decompositions for Learning Latent Variable Models Report Title
نویسنده
چکیده
This work considers a computationally and statistically e?cient parameter estimation method for a wide class of latent variable models—including Gaussian mixture models, hidden Markov models, and latent Dirichlet allocation—which exploits a certain tensor structure in their loworder observable moments (typically, of secondand third-order). Speci?cally, parameter estimation is reduced to the problem of extracting a certain (orthogonal) decomposition of a symmetric tensor derived from the moments; this decomposition can be viewed as a natural generalization of the singular value decomposition for matrices. Although tensor decompositions are generally intractable to compute, the decomposition of these specially structured tensors can be e?ciently obtained by a variety of approaches, including power iterations and maximization approaches (similar to the case of matrices). A detailed analysis of a robust tensor power method is provided, establishing an analogue of Wedin’s perturbation theorem for the singular vectors of matrices. This implies a robust and computationally tractable estimation approach for several popular latent variable models Tensor Decompositions for Learning Latent Variable Models Anima Anandkumar, Rong Ge, Daniel Hsu, Sham M. Kakade, and Matus Telgarsky University of California, Irvine Princeton University Microsoft Research, New England University of California, San Diego
منابع مشابه
Tensor decompositions for learning latent variable models
This work considers a computationally and statistically efficient parameter estimation method for a wide class of latent variable models—including Gaussian mixture models, hidden Markov models, and latent Dirichlet allocation—which exploits a certain tensor structure in their low-order observable moments (typically, of secondand third-order). Specifically, parameter estimation is reduced to the...
متن کاملEfficient Orthogonal Tensor Decomposition, with an Application to Latent Variable Model Learning
Decomposing tensors into orthogonal factors is a well-known task in statistics, machine learning, and signal processing. We study orthogonal outer product decompositions where the factors in the summands in the decomposition are required to be orthogonal across summands, by relating this orthogonal decomposition to the singular value decompositions of the flattenings. We show that it is a non-t...
متن کاملUniqueness of Tensor Decompositions with Applications to Polynomial Identifiability
We give a robust version of the celebrated result of Kruskal on the uniqueness of tensor decompositions: we prove that given a tensor whose decomposition satisfies a robust form of Kruskal’s rank condition, it is possible to approximately recover the decomposition if the tensor is known up to a sufficiently small (inverse polynomial) error. Kruskal’s theorem has found many applications in provi...
متن کاملLearning Negative Mixture Models by Tensor Decompositions
This work considers the problem of estimating the parameters of negative mixture models, i.e. mixture models that possibly involve negative weights. The contributions of this paper are as follows. (i) We show that every rational probability distributions on strings, a representation which occurs naturally in spectral learning, can be computed by a negative mixture of at most two probabilistic a...
متن کاملTensors and Latent Variable Models
In this paper we discuss existing and new connections between latent variable models from machine learning and tensors (multi-way arrays) from multilinear algebra. A few ideas have been developed independently in the two communities. However, there are still many useful but unexplored links and ideas that could be borrowed from one of the communities and used in the other. We will start our dis...
متن کامل